say a linear transformation T: <n!<m is one-to-one if Tmaps distincts vectors in <n into distinct vectors in <m. In other words, a linear transformation T: <n!<m is one-to-one if for every win the range of T, there is exactly one vin <n such that T(v) = w. Examples: 1.Tags: column space elementary row operations Gauss-Jordan elimination kernel kernel of a linear transformation kernel of a matrix leading 1 method linear algebra linear transformation matrix for linear transformation null space nullity nullity of a linear transformation nullity of a matrix range rank rank of a linear transformation rank of a ...Solved 0 0 (1 point) If T : R2 → R3 is a linear | Chegg.com. Math. Advanced Math. Advanced Math questions and answers. 0 0 (1 point) If T : R2 → R3 is a linear transformation such that T and T then the matrix that represents Ts 25 15 = = 0 15.... matrix and T is a transformation defined by T(x)=Ax, then the domain of T is ℝ3., If A is an m×n matrix, then the range of the transformation x maps to↦AxIn this section, we introduce the class of transformations that come from matrices. Definition 3.3.1: Linear Transformation. A linear transformation is a transformation T: Rn → Rm satisfying. T(u + v) = T(u) + T(v) T(cu) = cT(u) for all vectors u, v in Rn and all scalars c.Write the equation in standard form and identify the center and the values of a and b. Identify the lengths of the transvers A: See Answer. Q: For every real number x,y, and z, the statement (x-y)z=xz-yz is true. a. always b. sometimes c. Never Name the property the equation illustrates. 0+x=x a. Identity P A: See Answer.How to ﬁnd the image of a vector under a linear transformation. Example 0.3. Let T: R2 →R2 be a linear transformation given by T( 1 1 ) = −3 −3 , T( 2 1 ) = 4 2 . Find T( 4 3 ). Solution. We ﬁrst try to ﬁnd constants c 1,c 2 such that 4 3 = c 1 1 1 + c 2 2 1 . It is not a hard job to ﬁnd out that c 1 = 2, c 2 = 1. Therefore, T( 4 ... A linear pattern exists if the points that make it up form a straight line. In mathematics, a linear pattern has the same difference between terms. The patterns replicate on either side of a straight line.Advanced Math questions and answers. Suppose T : R4 → R4 with T (x) = Ax is a linear transformation such that • (0,0,1,0) and (0,0,0,1) lie in the kernel of T, and • all vectors of the form (X1, X2,0,0) are reflected about the line 2x1 – X2 = 0. (a) Compute all the eigenvalues of A and a basis of each eigenspace.There exists some vector b in R m such that the equation T ( x )= b has more than one solution x in R n . There are two different inputs of T with the same ...If T:R2→R3 is a linear transformation such that T[1 2]=[5 −4 6] and T[1 −2]=[−15 12 2], then the matrix that represents T is This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.Answer to Solved If T : R3 -> R3 is a linear transformation such that. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Theorem 5.1.1: Matrix Transformations are Linear Transformations. Let T: Rn ↦ Rm be a transformation defined by T(→x) = A→x. Then T is a linear transformation. It turns out that every linear transformation can be expressed as a matrix transformation, and thus linear transformations are exactly the same as matrix transformations.A. ) The question goes as follows: Let V be a vector space and let T: M2 × 2(R)— > V such that T(AB) = T(BA) for all A, B ∈ M2 × 2. Show that T(A) = 1 / 2(trA)T(I2) for all A ∈ M2 × 2. I have no clue how to approach this. I’ve tried everything but I keep going in circles. Please help me.A linear transformation T is one-to-one if and only if ker(T) = {~0}. Deﬁnition 3.10. Let V and V 0 be vector spaces. A linear transformation T : V → V0 is invertibleif thereexists a linear transformationT−1: V0 → V such thatT−1 T is the identity transformation on V and T T−1 is the identity transformation on V0.(1 point) If T: R3 → R3 is a linear transformation such that -0-0) -OD-EO-C) then T -5 Problem 3. (1 point) Consider a linear transformation T from R3 to R2 for which -0-9--0-0--0-1 Find the matrix A of T. 0 A= (1 point) Find the matrix A of the linear transformation T from R2 to R2 that rotates any vector through an angle of 30° in the counterclockwise …That's my first condition for this to be a linear transformation. And the second one is, if I take the transformation of any scaled up version of a vector -- so let me just multiply vector a times …If is a linear transformation such that and then This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.Example 3. Rotation through angle a Using the characterization of linear transformations it is easy to show that the rotation of vectors in R 2 through any angle a (counterclockwise) is a linear operator. In order to find its standard matrix, we shall use the observation made immediately after the proof of the characterization of linear transformations. . This …A and B both are onto. \, The transformation», (x. 9.2) (x+y. y4+2):R’ > R? is ot al, (a.) Linear and has zero kernel, (b.) Linear and has a proper subspace as 26., kernel, (c.) Neither linear nor 1-1, (d.) Neither linear nor onto, Let T:R> + W be the orthogonal projection, of R’ onto the x plane W’ . Then, (a.)If T:R 3 →R 2 is a linear transformation such that T =, T =, T =, then the matrix that represents T is . Show transcribed image text. Here’s the best way to solve it. Linear Transformation from Rn to Rm. N(T) = {x ∈Rn ∣ T(x) = 0m}. The nullity of T is the dimension of N(T). R(T) = {y ∈ Rm ∣ y = T(x) for some x ∈ Rn}. The rank of T is the dimension of R(T). The matrix representation of a linear transformation T: Rn → Rm is an m × n matrix A such that T(x) = Ax for all x ∈Rn. Fact: If T: Rk!Rnand S: Rn!Rmare both linear transformations, then S Tis also a linear transformation. Question: How can we describe the matrix of the linear transformation S T in terms of the matrices of Sand T? Fact: Let T: Rn!Rn and S: Rn!Rm be linear transformations with matrices Band A, respectively. Then the matrix of S Tis the product AB.0 T: RR is a linear transformation such that T [1] -31 and 25 then the matrix that represents T is. Please answer ASAP. will rate :)y2 =[−1 6] y 2 = [ − 1 6] Let R2 → R2 R 2 → R 2 be a linear transformation that maps e1 into y1 and e2 into y2. Find the images of. A = [ 5 −3] A = [ 5 − 3] b =[x y] b = [ x y] I am not sure how to this. I think there is a 2x2 matrix that you have to find that vies you the image of A. linear-algebra.LTR-0025: Linear Transformations and Bases. Recall that a transformation T: V→W is called a linear transformation if the following are true for all vectors u and v in V, and scalars k. T(ku)= kT(u) T(u+v) = T(u)+T(v) Suppose we want to define a linear transformation T: R2 → R2 by.Linear Transformations. A linear transformation on a vector space is a linear function that maps vectors to vectors. So the result of acting on a vector {eq}\vec v{/eq} by the linear transformation {eq}T{/eq} is a new vector {eq}\vec w = T(\vec v){/eq}.Chapter 4 Linear Transformations 4.1 Definitions and Basic Properties. Let V be a vector space over F with dim(V) = n.Also, let be an ordered basis of V.Then, in the last section of the previous chapter, it was shown that for each x ∈ V, the coordinate vector [x] is a column vector of size n and has entries from F.So, in some sense, each element of V looks like …Linear Algebra Proof. Suppose vectors v 1 ,... v p span R n, and let T: R n -> R n be a linear transformation. Suppose T (v i) = 0 for i =1, ..., p. Show that T is a zero transformation. That is, show that if x is any vector in R n, then T (x) = 0. Be sure to include definitions when needed and cite theorems or definitions for each step along ...To prove the transformation is linear, the transformation must preserve scalar multiplication, addition, and the zero vector. S: R3 → R3 ℝ 3 → ℝ 3. First prove the transform preserves this property. S(x+y) = S(x)+S(y) S ( x + y) = S ( x) + S ( y) Set up two matrices to test the addition property is preserved for S S.Then T is a linear transformation. Furthermore, the kernel of T is the null space of A and the range of T is the column space of A. Thus matrix multiplication provides a wealth of examples of linear transformations between real vector spaces. In fact, every linear transformation (between finite dimensional vector spaces) can deﬁne these transformations in this section, and show that they are really just the matrix transformations looked at in another way. Having these two ways to view them turns out to be useful because, in a given situation, one perspective or the other may be preferable. Linear Transformations Deﬁnition 2.13 Linear Transformations Rn →RmIn general, given $v_1,\dots,v_n$ in a vector space $V$, and $w_1,\dots w_n$ in a vector space $W$, if $v_1,\dots,v_n$ are linearly independent, then there is a linear transformation $T:V\to W$ such that $T(v_i)=w_i$ for $i=1,\dots,n$.If T:R2→R2 is a linear transformation such that T([56])=[438] and T([6−1])=[27−15] then the standard matrix of T is A=⎣⎡1+2⎦⎤ This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.Let V and W be vector spaces, and T : V ! W a linear transformation. 1. The kernel of T (sometimes called the null space of T) is deﬁned to be the set ker(T) = f~v 2 V j T(~v) =~0g: 2. The image of T is deﬁned to be the set im(T) = fT(~v) j ~v 2 Vg: Remark If A is an m n matrix and T A: Rn! Rm is the linear transformation induced by A, then ...1. If T: P1 →P1 T: P 1 → P 1 is a linear transformation such that T(1 + 5x) = 3 + 3x T ( 1 + 5 x) = 3 + 3 x and T(4 + 19x) = −1 + 3x T ( 4 + 19 x) = − 1 + 3 x, then T(−2 − 4x) = T ( − 2 − 4 x) = ? linear-algebra. Share. Cite. Follow. edited Feb 20, 2013 at 0:44. gnometorule. 4,600 26 43.I think it is also good to get an intuition for the solution. The easiest way to think about this is to make T a projection of V onto U (think about it in 3D space: if U is the xy plane, just "flatten" everything onto the plane).Definition 10.2.1: Linear Transformation transformation T : Rm → Rn is called a linear transformation if, for every scalar and every pair of vectors u and v in Rm T (u + v) = T (u) + T (v) and Expert Answer. 100% (1 rating) Step 1. Given, a linear transformation is. T ( [ 1 0 0]) = [ − 3 2 − 4], T ( [ 0 1 0]) = [ − 4 − 3 − 2], T ( [ 0 0 1]) = [ − 3 1 − 4] First, we write the vector in terms of known linear transfor... View the full answer.Advanced Math questions and answers. Suppose T : R4 → R4 with T (x) = Ax is a linear transformation such that • (0,0,1,0) and (0,0,0,1) lie in the kernel of T, and • all vectors of the form (X1, X2,0,0) are reflected about the line 2x1 – X2 = 0. (a) Compute all the eigenvalues of A and a basis of each eigenspace.Formally, composition of functions is when you have two functions f and g, then consider g (f (x)). We call the function g of f "g composed with f". So in this video, you apply a linear …Linear Transformations. A linear transformation on a vector space is a linear function that maps vectors to vectors. So the result of acting on a vector {eq}\vec v{/eq} by the linear transformation {eq}T{/eq} is a new vector {eq}\vec w = T(\vec v){/eq}. Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteNetflix is testing out a programmed linear content channel, similar to what you get with standard broadcast and cable TV, for the first time (via Variety). The streaming company will still be streaming said channel — it’ll be accessed via N...Advanced Math questions and answers. Let u and v be vectors in R. It can be shown that the set P of all points in the parallelogram determined by u and v has the form au + bv, for 0sas1,0sbs1. Let T: Rn Rm be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by T (u ...If T : V !V is a linear transformation, a nonzero vector v with T(v) = v is called aneigenvector of T, and the corresponding scalar 2F is called aneigenvalue of T. By convention, the zero vector 0 is not an eigenvector. De nition If T : V !V is a linear transformation, then for any xed value of 2F, the set E of vectors in V satisfying T(v) = v is aLTR-0025: Linear Transformations and Bases. Recall that a transformation T: V→W is called a linear transformation if the following are true for all vectors u and v in V, and scalars k. T(ku)= kT(u) T(u+v) = T(u)+T(v) Suppose we want to define a linear transformation T: R2 → R2 by.7. Linear Transformations IfV andW are vector spaces, a function T :V →W is a rule that assigns to each vector v inV a uniquely determined vector T(v)in W. As mentioned in Section 2.2, two functions S :V →W and T :V →W are equal if S(v)=T(v)for every v in V. A function T : V →W is called a linear transformation if Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteIf T: R2 + R3 is a linear transformation such that 4 4 +(91)-(3) - (:)=( 16 -23 T = 8 and T T ( = 2 -3 3 1 then the standard matrix of T is A= = Previous question Next question Get more help from CheggDetermine if T : Mn×n(R) → R given by T(A) = det(A) is linear. Proof. Note that. T ... Let T : R3 → R4 be a linear transformation such that. T. ⎡. ⎣. 1. −1.Answer to Solved (1 point) If T:R3→R3T:R3→R3 is a linear. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Let V and W be vector spaces, and T : V ! W a linear transformation. 1. The kernel of T (sometimes called the null space of T) is deﬁned to be the set ker(T) = f~v 2 V j T(~v) =~0g: 2. The image of T is deﬁned to be the set im(T) = fT(~v) j ~v 2 Vg: Remark If A is an m n matrix and T A: Rn! Rm is the linear transformation induced by A, then ...23 de jul. de 2013 ... T(x) = Ax. Then solving the system amounts to finding all of the vectors x ∈ Rn such that T(x) = 0. Solving ...Exercise 2.4.10: Let A and B be n×n matrices such that AB = I n. (a) Use Exercise 9 to conclude that A and B are invertible. (b) Prove A = B−1 (and hence B = A−1). (c) State and prove analogous results for linear transformations deﬁned on ﬁnite-dimensional vector spaces. Solution: (a) By Exercise 9, if AB is invertible, then so are A ...12 years ago. These linear transformations are probably different from what your teacher is referring to; while the transformations presented in this video are functions that associate vectors with vectors, your teacher's transformations likely refer to actual manipulations of functions. Unfortunately, Khan doesn't seem to have any videos for ... Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteLinear Transformations. A linear transformation on a vector space is a linear function that maps vectors to vectors. So the result of acting on a vector {eq}\vec v{/eq} by the linear transformation {eq}T{/eq} is a new vector {eq}\vec w = T(\vec v){/eq}. Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might haveIf is a linear transformation such that and then This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.A and B both are onto. \, The transformation», (x. 9.2) (x+y. y4+2):R’ > R? is ot al, (a.) Linear and has zero kernel, (b.) Linear and has a proper subspace as 26., kernel, (c.) Neither linear nor 1-1, (d.) Neither linear nor onto, Let T:R> + W be the orthogonal projection, of R’ onto the x plane W’ . Then, (a.)7. Linear Transformations IfV andW are vector spaces, a function T :V →W is a rule that assigns to each vector v inV a uniquely determined vector T(v)in W. As mentioned in Section 2.2, two functions S :V →W and T :V →W are equal if S(v)=T(v)for every v in V. A function T : V →W is called a linear transformation if Theorem(One-to-one matrix transformations) Let A be an m × n matrix, and let T ( x )= Ax be the associated matrix transformation. The following statements are equivalent: T is one-to-one. For every b in R m , the equation T ( x )= b has at most one solution. For every b in R m , the equation Ax = b has a unique solution or is inconsistent. Then T is a linear transformation if whenever k, p are scalars and →v1 and →v2 are vectors in V T(k→v1 + p→v2) = kT(→v1) + pT(→v2) Several important …Let V V be a vector space, and. T: V → V T: V → V. a linear transformation such that. T(2v1 − 3v2) = −3v1 + 2v2 T ( 2 v 1 − 3 v 2) = − 3 v 1 + 2 v 2. and. T(−3v1 + 5v2) = 5v1 + 4v2 T ( − 3 v 1 + 5 v 2) = 5 v 1 + 4 v 2. Solve. T(v1), T(v2), T(−4v1 − 2v2) T ( v 1), T ( v 2), T ( − 4 v 1 − 2 v 2)5. Question: Why is a linear transformation called “linear”? 3 Existence and Uniqueness Questions 1. Theorem 11: Suppose T : Rn → Rm is a linear transformation. Then T is one-to-one if and only if the equation T(x) = 0 has only the trivial solution. 2. Proof: First suppose that T is one-to-one. Then the transformation T maps at most one ...Answer to Solved If T : R3 -> R3 is a linear transformation such that. This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have Meta Discuss the workings and policies of this siteExample 5.8.2: Matrix of a Linear. Let T: R2 ↦ R2 be a linear transformation defined by T([a b]) = [b a]. Consider the two bases B1 = {→v1, →v2} = {[1 0], [− 1 1]} and B2 = {[1 1], [ 1 − 1]} Find the matrix MB2, B1 of …derivative map Dsending a function to its derivative is a linear transformation from V to W. If V is the vector space of all continuous functions on [a;b], then the integral map I(f) = b a f(x)dxis a linear transformation from V to R. The transpose map is a linear transformation from M m n(F) to M n m(F) for any eld F and any positive integers m;n.If the original test had little or nothing to do with intelligence, then the IQ's which result from a linear transformation such as the one above would be ...If we can prove that our transformation is a matrix transformation, then we can use linear algebra to study it. This raises two important questions: How can we tell if a …If T: R2 + R3 is a linear transformation such that 4 4 +(91)-(3) - (:)=( 16 -23 T = 8 and T T ( = 2 -3 3 1 then the standard matrix of T is A= = Previous question Next question Get more help from Chegglinear_transformations 2 Previous Problem Problem List Next Problem Linear Transformations: Problem 2 (1 point) HT:R R’ is a linear transformation such that T -=[] -1673-10-11-12-11 and then the matrix that represents T is Note: You can earn partial credit on this problem. Preview My Answers Submit Answers You have attempted this problem 0 times.Question. Let u and v be vectors in R^n. It can be shown that the set P of all points in the parallelogram determined by u and v has the form au+bv, for 0 ≤ a ≤ 1, 0 ≤ b ≤ 1. Let T : R^n --> R^m be a linear transformation. Explain why the image of a point in T under the transformation T lies in the parallelogram determined by T (u) and ...For those of you fond of fancy terminology, these animated actions could be described as "linear transformations of one-dimensional space".The word transformation means the same thing as the word function: something which takes in a number and outputs a number, like f (x) = 2 x .However, while we typically visualize functions with graphs, people tend …9) Find linear transformations U, T : F2 → F2 such that UT = T0 (the zero transformation) ... If y = 0 then (y,0) is not the zero vector. Therefore, TU = T0, as ...If T:R2→R2 is a linear transformation such that T([56])=[438] and T([6−1])=[27−15] then the standard matrix of T is A=⎣⎡1+2⎦⎤ This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts.Concept: Linear transformation: The Linear transformation T : V → W for any vectors v1 and v2 in V and scalars a and b of the un. Get Started. Exams SuperCoaching Test Series Skill Academy. ... If A is a square matrix such that A2 …7. Linear Transformations IfV andW are vector spaces, a function T :V →W is a rule that assigns to each vector v inV a uniquely determined vector T(v)in W. As mentioned in Section 2.2, two functions S :V →W and T :V →W are equal if S(v)=T(v)for every v in V. A function T : V →W is called a linear transformation if(1 point) If T: R3 → R3 is a linear transformation such that -0-0) -OD-EO-C) then T -5 Problem 3. (1 point) Consider a linear transformation T from R3 to R2 for which -0-9--0-0--0-1 Find the matrix A of T. 0 A= (1 point) Find the matrix A of the linear transformation T from R2 to R2 that rotates any vector through an angle of 30° in the counterclockwise direction.Tour Start here for a quick overview of the site Help Center Detailed answers to any questions you might have0 T: RR is a linear transformation such that T [1] -31 and 25 then the matrix that represents T is. Please answer ASAP. will rate :) By deﬁnition, every linear transformation T is such that T(0)=0. Two examples of linear transformations T :R2 → R2 are rotations around the origin and reﬂections along a line through the origin. An example of a linear transformation T :P n → P n−1 is the derivative function that maps each polynomial p(x)to its derivative p′(x).Expert Answer. 100% (1 rating) Transcribed image text: Let {e1,e2, es} be the standard basis of R3. IfT: R3 R3 is a linear transformation such tha 2 0 -3 T (ei) = -4 ,T (02) = -4 , and T (e) = 1 1 -2 -2 then TO ) = -1 5 10 15 Let A = -1 -1 and b=0 3 3 0 A linear transformation T : R2 + R3 is defined by T (x) = Ax. 1 Find an x= in R2 whose image ... Theorem10.2.3: Matrix of a Linear Transformation If T : Rm → Rn is a linear transformation, then there is a matrix A such that T(x) = A(x) for every x in Rm. We will call A the matrix that represents the transformation. As it is cumbersome and confusing the represent a linear transformation by the letter T and the matrix representingIf $T: \Bbb R^3→ \Bbb R^3$ is a linear transformation such that: $$ T \Bigg (\begin{bmatrix}-2 \\ 3 \\ -4 \\ \end{bmatrix} \Bigg) = \begin{bmatrix} 5\\ 3 \\ 14 \\ \end{bmatrix}$$ $$T \Bigg (\begin{bmatrix} 3 \\ -2 \\ 3 \\ \end{bmatrix} \Bigg) = \begin{bmatrix}-4 \\ 6 \\ -14 \\ \end{bmatrix}$$ $$ T\Bigg (\begin{bmatrix}-4 \\ -5 \\ 5 \\ \end ...Asked 8 years, 8 months ago. Modified 8 years, 8 months ago. Viewed 401 times. 5. Let W W be a vector space over R R and let T:R6 → W T: R 6 → W be a linear transformation such that S = {Te2, Te4, Te6} S = { T e 2, T e 4, T e 6 } spans W W. Wich one of the following must be true? (A) S S is a basis of W W.Sep 17, 2022 · A transformation \(T:\mathbb{R}^n\rightarrow \mathbb{R}^m\) is a linear transformation if and only if it is a matrix transformation. Consider the following example. Example \(\PageIndex{1}\): The Matrix of a Linear Transformation Linear transformations | Matrix transformations | Linear Algeb…. The previous three examples can be summarized as follows. LTR-0025: Linear Transformations and Bases. Recall tha derivative map Dsending a function to its derivative is a linear transformation from V to W. If V is the vector space of all continuous functions on [a;b], then the integral map I(f) = b a f(x)dxis a linear transformation from V to R. The transpose map is a linear transformation from M m n(F) to M n m(F) for any eld F and any positive integers m;n. How to ﬁnd the image of a vector under a linear transformation. Exa Then T is a linear transformation, to be called the zero trans-formation. 2. Let V be a vector space. Deﬁne T : V → V as T(v) = v for all v ∈ V. Then T is a linear transformation, to be called the identity transformation of V. 6.1.1 Properties of linear transformations Theorem 6.1.2 Let V and W be two vector spaces. Suppose T : V →the transformation of this vector by T is: T ( c u + d v) = [ 2 | c u 2 + d v 2 | 3 ( c u 1 + d v 1)] which cannot be written as. c [ 2 | u 2 | 3 u 1 − u 2] + d [ 2 | v 2 | 3 u 1 − v 2] So T is not linear. NOTE: this method combines the two properties in a single one, you can split them seperately to check them one by one: Let {e 1,e 2,e 3} be the standard basis of R 3.If T : R ...

Continue Reading## Popular Topics

- It seems to me you are approaching this problem the wrong way. It i...
- Finding a linear transformation given the span of the image. Find a...
- If T:R2→R2 is a linear transformation such that T([56...
- Tour Start here for a quick overview of the site Help Center Detailed ...
- A specific application of linear maps is for geometric transforma...
- A 100x2 matrix is a transformation from 2-dimensional space to 100-...
- a linear system with two such equations, so we can just use this e...
- 12 years ago. These linear transformations are probably diffe...